Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 11(1): 11524, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1253988

ABSTRACT

Nearly 5% of patients suffering from COVID-19 develop acute respiratory distress syndrome (ARDS). Extravascular lung water index (EVLWI) is a marker of pulmonary oedema which is associated with mortality in ARDS. In this study, we evaluate whether EVLWI is higher in patients with COVID-19 associated ARDS as compared to COVID-19 negative, ventilated patients with ARDS and whether EVLWI has the potential to monitor disease progression. EVLWI and cardiac function were monitored by transpulmonary thermodilution in 25 patients with COVID-19 ARDS subsequent to intubation and compared to a control group of 49 non-COVID-19 ARDS patients. At intubation, EVLWI was noticeably elevated and significantly higher in COVID-19 patients than in the control group (17 (11-38) vs. 11 (6-26) mL/kg; p < 0.001). High pulmonary vascular permeability index values (2.9 (1.0-5.2) versus 1.9 (1.0-5.2); p = 0.003) suggested a non-cardiogenic pulmonary oedema. By contrast, the cardiac parameters SVI, GEF and GEDVI were comparable in both cohorts. High EVLWI values were associated with viral persistence, prolonged intensive care treatment and in-hospital mortality (23.2 ± 6.7% vs. 30.3 ± 6.0%, p = 0.025). Also, EVLWI showed a significant between-subjects (r = - 0.60; p = 0.001) and within-subjects correlation (r = - 0.27; p = 0.028) to Horowitz index. Compared to non COVID-19 ARDS, COVID-19 results in markedly elevated EVLWI-values in patients with ARDS. High EVLWI reflects a non-cardiogenic pulmonary oedema in COVID-19 ARDS and could serve as parameter to monitor ARDS progression on ICU.


Subject(s)
COVID-19/complications , Extravascular Lung Water/immunology , Pulmonary Edema/mortality , Respiratory Distress Syndrome/mortality , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/immunology , COVID-19/mortality , Capillary Permeability , Disease Progression , Extravascular Lung Water/virology , Female , Hospital Mortality , Humans , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Lung/blood supply , Lung/physiopathology , Male , Middle Aged , Monitoring, Physiologic/methods , Monitoring, Physiologic/statistics & numerical data , Prognosis , Pulmonary Edema/diagnosis , Pulmonary Edema/immunology , Pulmonary Edema/virology , Respiration, Artificial , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Risk Assessment/methods , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thermodilution/methods , Thermodilution/statistics & numerical data , Young Adult
2.
Respir Res ; 22(1): 119, 2021 Apr 23.
Article in English | MEDLINE | ID: covidwho-1202183

ABSTRACT

BACKGROUND: In the absence of PCR detection of SARS-CoV-2 RNA, accurate diagnosis of COVID-19 is challenging. Low-dose computed tomography (CT) detects pulmonary infiltrates with high sensitivity, but findings may be non-specific. This study assesses the diagnostic value of SARS-CoV-2 serology for patients with distinct CT features but negative PCR. METHODS: IgM/IgG chemiluminescent immunoassay was performed for 107 patients with confirmed (group A: PCR + ; CT ±) and 46 patients with suspected (group B: repetitive PCR-; CT +) COVID-19, admitted to a German university hospital during the pandemic's first wave. A standardized, in-house CT classification of radiological signs of a viral pneumonia was used to assess the probability of COVID-19. RESULTS: Seroconversion rates (SR) determined on day 5, 10, 15, 20 and 25 after symptom onset (SO) were 8%, 25%, 65%, 76% and 91% for group A, and 0%, 10%, 19%, 37% and 46% for group B, respectively; (p < 0.01). Compared to hospitalized patients with a non-complicated course (non-ICU patients), seroconversion tended to occur at lower frequency and delayed in patients on intensive care units. SR of patients with CT findings classified as high certainty for COVID-19 were 8%, 22%, 68%, 79% and 93% in group A, compared with 0%, 15%, 28%, 50% and 50% in group B (p < 0.01). SARS-CoV-2 serology established a definite diagnosis in 12/46 group B patients. In 88% (8/9) of patients with negative serology > 14 days after symptom onset (group B), clinico-radiological consensus reassessment revealed probable diagnoses other than COVID-19. Sensitivity of SARS-CoV-2 serology was superior to PCR > 17d after symptom onset. CONCLUSIONS: Approximately one-third of patients with distinct COVID-19 CT findings are tested negative for SARS-CoV-2 RNA by PCR rendering correct diagnosis difficult. Implementation of SARS-CoV-2 serology testing alongside current CT/PCR-based diagnostic algorithms improves discrimination between COVID-19-related and non-related pulmonary infiltrates in PCR negative patients. However, sensitivity of SARS-CoV-2 serology strongly depends on the time of testing and becomes superior to PCR after the 2nd week following symptom onset.


Subject(s)
COVID-19/blood , COVID-19/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Critical Care/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Immunoglobulin G/analysis , Immunoglobulin M/analysis , Male , Middle Aged , Pandemics , Polymerase Chain Reaction , Retrospective Studies , Seroconversion , Serologic Tests , Tomography, X-Ray Computed , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL